NumPy – Data Types:
Nympy provides the below dataypes more than what exactly python holds.
| Data type | Description |
| bool_ | Boolean (True or False) stored as a byte |
| int_ | Default integer type (same as C long; normally either int64 or int32) |
| intc | Identical to C int (normally int32 or int64) |
| intp | Integer used for indexing (same as C ssize_t; normally either int32 or int64) |
| int8 | Byte (-128 to 127) |
| int16 | Integer (-32768 to 32767) |
| int32 | Integer (-2147483648 to 2147483647) |
| int64 | Integer (-9223372036854775808 to 9223372036854775807) |
| uint8 | Unsigned integer (0 to 255) |
| uint16 | Unsigned integer (0 to 65535) |
| uint32 | Unsigned integer (0 to 4294967295) |
| uint64 | Unsigned integer (0 to 18446744073709551615) |
| float_ | Shorthand for float64. |
| float16 | Half precision float: sign bit, 5 bits exponent, 10 bits mantissa |
| float32 | Single precision float: sign bit, 8 bits exponent, 23 bits mantissa |
| float64 | Double precision float: sign bit, 11 bits exponent, 52 bits mantissa |
| complex_ | Shorthand for complex128. |
| complex64 | Complex number, represented by two 32-bit floats (real and imaginary components) |
| complex128 | Complex number, represented by two 64-bit floats (real and imaginary components) |
Let us see some example below:
How identify the datatype ?
Below is the command. we will use the “dtype” method to identify the datatype
>>> import numpy as np
>>> x=np.array([1,2,3,4,5])
>>> x
array([1, 2, 3, 4, 5])
>>> x.dtype
dtype('int32')What if you want to assign the integers as float datatype ?
Below is the command. Please observe that we have given the dtype as floating datatype.
>>> x=np.array([1,2,3,4,5], dtype=float)
>>> x.dtype
dtype('float64')
>>> x
array([ 1., 2., 3., 4., 5.]) Below example shows the floating dataype values.
>>> y=np.array([.1,.2,.3,.4,.5])
>>> y
array([ 0.1, 0.2, 0.3, 0.4, 0.5])
>>> y.dtype
dtype('float64')Now let us see some more data types too.
This example will show the Boolean datatype.
>>> eq=np.array([True, False])
>>> eq
array([ True, False], dtype=bool)
>>> eq.dtype
dtype('bool')This example will show the String datatype.
>>> str=np.array(["This", "is", "NumPy"])
>>> str
array(['This', 'is', 'NumPy'],
dtype='<U5')
>>> str.dtype
dtype('<U5')This example will show the Complex datatype.
>>> j=2
>>> solve=np.array([2+3j, 5+j, 9+2*3j])
>>> solve
array([ 2.+3.j, 7.+0.j, 9.+6.j])
>>> solve.dtype
dtype('complex128')
>>> solve.real
array([ 2., 7., 9.])